Betti numbers of symmetric shifted ideals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Betti Numbers of Monomial Ideals and Shifted Skew Shapes

We present two new problems on lower bounds for Betti numbers of the minimal free resolution for monomial ideals generated in a fixed degree. The first concerns any such ideal and bounds the total Betti numbers, while the second concerns ideals that are quadratic and bihomogeneous with respect to two variable sets, but gives a more finely graded lower bound. These problems are solved for certai...

متن کامل

Optimal Betti Numbers of Forest Ideals

We prove a tight lower bound on the algebraic Betti numbers of tree and forest ideals and an upper bound on certain graded Betti numbers of squarefree monomial ideals.

متن کامل

Betti numbers of mixed product ideals

We compute the Betti numbers of the resolution of a special class of square-free monomial ideals, the ideals of mixed products. Moreover when these ideals are Cohen-Macaulay we calculate their type. Mathematics Subject Classification (2000). Primary 13P10; Secondary 13B25.

متن کامل

Betti numbers of transversal monomial ideals

In this paper, by a modification of a previously constructed minimal free resolution for a transversal monomial ideal, the Betti numbers of this ideal is explicitly computed. For convenient characteristics of the ground field, up to a change of coordinates, the ideal of t-minors of a generic pluri-circulant matrix is a transversal monomial ideal . Using a Gröbner basis for this ideal, it is sho...

متن کامل

Bounding Betti Numbers of Bipartite Graph Ideals

We prove a conjectured lower bound of Nagel and Reiner on Betti numbers of edge ideals of bipartite graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2020

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2020.04.037